
Midterm exam
• 3. December: 8.15-9.45
• Material of introduction, particles, oxidation 1: 

exercises 1-3
• Handouts and notes, calculator, no computer, 

no exercise solutions
• 2 Rooms 

– GC 3 31: Last names A-G
– CE 1 100: Last names H-Z

• Detailed information on moodle
• Lecture: 10.15-12.00



Oxidation and Disinfection 
Processes in Water Treatment

2. Advanced oxidation
3. Disinfection 

4. Disinfection by-products

Urs von Gunten



Advanced oxidation processes
• Processes based on .OH radicals
• “Broadband” solution: .OH radicals react diffusion 

controlled with most inorganic and organic 
compounds

• Mostly consumed by water matrix (DOM, 
carbonate/bicarbonate) 

• Very short lifetimes in µs-range
• Very low steady-state concentrations (< 10-12 M)
• Efficiency quite low
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Efficiency depends on k and •OH[ ]



2 O3 + H2O2 ® 2.OH  +  3 O2 (Peroxone process)

O3 +  UVC radiation  ® H2O2 ® •OH, O2

O3 + AC ® •OH + O2 

H2O2 +  UVC radiation  ® 2 •OH  (also direct photolysis)

H2O2 +  Fe2+ ® .OH  +  Fe3+ +  OH- (Fenton reaction)

H2O  +  VUV radiation (120-160 nm) ® •OH  +  H•

H2O  +  ultrasound  ® •OH  +  H•

H2O  +  ionizing radiation ® •OH, eaq
-, H• , H2O2, H2, H+

TiO2 + hn ® h+ + e- ® •OH + O2
-

Production of OH radicals – AOPs
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Oxidation kinetics during ozonation, ozone and OH radicals 
have to be considered: rate law and rate constants

k: second-order rate constants (M-1s-1)

geosmin IPMP b-Ionone

Ozone (≈ 10-5M)        0.1 50 1.6x105
.
OH (≈ 10-12M)       7.8x109 4.9x109 7.8x109

t1/2 (s) 1 mg/L O3 3.5x105 700 0.2

Oxidation mostly by OH Oxidation by ozone
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Taste and odor
compounds



Advanced oxidation in a pilot plant: Lake Zurich
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Oxidation of T&O compounds during pilot-plant ozonation:
Peroxone process (AOP)
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Hydrogen peroxide addition is a flexible option for seasonally ocurring 
T&O episodes or accidental spills 
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UV-based processes

H= I✕tR

H: Fluence (J/m2 = 0.1mJ/cm2) or “Dose”
I: Fluence Rate (W/m2)  or “Intensity”, depends on lamp 

and water quality
tR: Duration of exposure (s) “Residence time”



Advanced Oxidation Process UV/H2O2

H2O2 +  UVC radiation  ® 2 •OH

Oxidation of micropollutants by direct photolysis and OH radicals 

Rate law for oxidation of P:
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P :  micropollutant
kabs(λ) = I(λ) ×ε(λ); specific rate of light absorbance by P
I:  Fluence rate (intensity), ε :  molar extinction coefficient

φ :  Quantum yield moles of products formed
moles of photons absorbed at λ
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kOH :  Second order rate constant for the reaction of P with OH

Note: direct photolysis depends on product of f and e

Typically > 10 times higher UV doses required than for UV disinfection

Energy requirements for UV/H2O2 typically 5-20 higher than for O3-based processes



Disinfection



Treatment schemes for disinfection

Pre-oxidation
Disinfection

Particle
removal

Disinfection
Oxidation

Filtration
Activated carbon

Distribution
Final disinfection

Surface water

Raw water

Raw water Disinfection Distribution

Groundwater



CT: product of oxidant concentration and contact time

C*T (oxidant exposure) (mgL-1min) values for 
99% inactivation of microorganisms at 5 oC

 
 
 

 Disinfectant 
 

 

Microorganism 
 

free chlorine 
pH 6 - 7 

 

chloramine 
pH 8 - 9 

 

Chlorine 
dioxide 
pH 6 - 7 

 

Ozone 
pH 6 - 7 

E. coli 0.034 - 0.05 95 - 180 0.4 - 0.75 0.02 

Polio 1 1.1 - 2.5 770 - 3740 0.2 - 6.7 0.1 - 0.2 

Rotavirus 0.01 - 0.05 3810 - 6480 0.2 - 2.1 0.006 - 
0.06 

Giardia lamblia 47 - > 150 -- -- 0.5 - 0.6 

Giardia muris 30 - 630 1400 7.2 - 18.5 1.8 - 2.0 

Cryptosporidium 7200 -- > 78 ~20 



Kinetics of disinfection: Chick and Watson (1908)

-

C = concentration of disinfectant



Inactivation of B. subtilis spores by ozone at pH 7
Temperature dependence

A: collision frequency parameter

Ea: activation energy from

plot of log(k) vs 1/T

Driedger et al. ,Water Res., 2001

Arrhenius equation
lag phase
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Inactivation of E. coli by chlorine: Role of HOCl

HOCl             OCl- + H+ pKa = 7.5



Disinfection: Role of hydraulics
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Elimination of microorganisms in ideal reactors I

Plug flow
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input = output+ disappearance by reaction:

QN0 =QN + kcoxNQt

QN = (mass, number, mole)/time unit

⇒ N0 = N + kcoxNt

⇒
N
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=
1

1+ kcoxt

CSTR

Elimination of microorganisms in ideal reactors II
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Cascade of CSTRs
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kN ,ox : second order rate constant for inactivation
of microorganisms
kox : first order rate constant for oxidant decrease
t :  total residence time; m :  number of reactors
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Comparison of disinfection efficiency 
in various reactors: constant oxidant concentration

kN,O3 = 2.3x103 M-1s-1

O3,o = 0.05 mg/L 

= 10-6 M

An increasing number of 
CSTRs approaches a 
plug-flow reactor



UV disinfection: 
germicidal action of UV light

• UV light energy is absorbed by microbial 
nucleic acid.

• The amount of damage depends on the UV 
dose absorbed.

• Damage to nucleic acid prevents 
reproduction.
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DNA vs E.coli action spectrum

Low pressure UV lamps
Emission at 254 nm



UV inactivation kinetics

In drinking water mostly    
first-order kinetics

Recommended dose 400J/m2
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UV dose for a 2-log reduction

Bacteria Dose to achieve 99% 
Inactivation

Shigella dysenteriae 42 J/m2

E.coli 66 J/m2

Fecal coliforms 68 J/m2

Salmonella enteritidis 76 J/m2

Pseudomonas Aeruginosa 105 J/m2

Clostridium tetani spores 220 J/m2

Bacillus subtilis spores 220 J/m2

Required dose for drinking water: 400 J/m2



UV dose for a 2-log reduction

Virus Dose to achieve 99% 
Inactivation

Influenza 66 J/m2

Polio 140 J/m2

Rotavirus 150-190 J/m2

Protozoa

Giardia Lamblia 50 J/m2

Cryptosporidium 
parvum oocysts

49 J/m2

Required dose for drinking water: 400 J/m2
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Oxidation/Disinfection
by-products

Reaction of oxidants with water 
matrix components





Disinfection vs By-product formation

Disinfection

Acute Toxicity
from pathogenic
microorganisms

Disinfection By-products

Chronic Toxicity

• Concept for overall risk assessment
• Danger of export to developing countries (Peru)

• No chlorination in small water supplies (USEPA study DBPs)
• Cholera epidemic 1991: 300’000 cases (> 3000 †)



• Non-halogenated organic compounds
– Aldehydes, Ketones, Hydroxy-ketones, Keto-acids, 

Carboxylic acids è assimilable organic carbon (AOC)
– Nitrosamines (e.g. NDMA)

• Halogenated organic compounds
– Chlorinated, brominated, iodinated products

• Inorganic compounds
– Bromate, iodate, chlorite, chlorate



Desinfection by-products: 
Trihalomethanes (THM)

• THMs: CHCl3, CHCl2Br, CHClBr2, CHBr3
• Formation during Chlorination of drinking waters
• Discovery by J. Rook 1974
• 1976, USEPA study: THM’s are always formed during 

chlorination of drinking water 
• 1976, National Cancer Institute: Chloroform leads to 

cancer in rats
• 1998 (Swan and Waller): Significantly higher risk for 

spontaneous abortion for consumption of drinking water 
with high THM’s (Showers!)

• Today the issue of spontaneous abortions is controversial



Conclusions
• Ozonation and AOPs are useful processes for micropollutant 

degradation
• Direct reaction with ozone, reaction with OH radicals, direct 

photolysis
• Ozone-based AOPs are typically more energy efficient than 

UV/H2O2

• Chemical disinfection 
• Kinetics (pH, T, lag phase)
• Inactivation of protozoa may be problematic (-> UV)
• Reactor hydraulics play an important role (several log 

inactivation)
• Disinfection by-products

• Always formed during chemical disinfection
• pH, T, DOC, bromide


